c – OpenGL中的Oren-Nayar照明(如何计算片段着色器中的视图方向)

前端之家收集整理的这篇文章主要介绍了c – OpenGL中的Oren-Nayar照明(如何计算片段着色器中的视图方向)前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
我试图在片段着色器中实现Oren-Nayar照明,如图 here所示.

但是,如下图所示,我在地形上获得了一些奇怪的照明效果.

我正在向着色器发送“视图方向”制服作为相机的“前”矢量.我不知道这是否正确,因为移动相机会改变工件.

将“前”矢量与MVP矩阵相乘可以获得更好的结果,但是从某些角度观察地形时,人为因素仍然非常显着.在黑暗区域和屏幕边缘周围特别明显.

可能会导致这种影响?

神器的例子

场景应该如何看

顶点着色器

#version 450

layout(location = 0) in vec3 position;
layout(location = 1) in vec3 normal;

out VS_OUT {
    vec3 normal;
} vert_out;

void main() {
    vert_out.normal = normal;
    gl_Position = vec4(position,1.0);
}

管状控制着色器

#version 450

layout(vertices = 3) out;

in VS_OUT {
    vec3 normal;
} tesc_in[];

out TESC_OUT {
    vec3 normal;
} tesc_out[];

void main() { 
    if(gl_InvocationID == 0) {
        gl_TessLevelInner[0] = 1.0;
        gl_TessLevelInner[1] = 1.0;

        gl_TessLevelOuter[0] = 1.0;
        gl_TessLevelOuter[1] = 1.0;
        gl_TessLevelOuter[2] = 1.0;
        gl_TessLevelOuter[3] = 1.0;
    }

    tesc_out[gl_InvocationID].normal = tesc_in[gl_InvocationID].normal;
    gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
}

Tesselation评估着色器

#version 450

layout(triangles,equal_spacing) in;

in TESC_OUT {
    vec3 normal;
} tesc_in[];

out TESE_OUT {
    vec3 normal;
    float height;
    vec4 shadow_position;
} tesc_out;

uniform mat4 model_view;
uniform mat4 model_view_perspective;
uniform mat3 normal_matrix;
uniform mat4 depth_matrix;

vec3 lerp(vec3 v0,vec3 v1,vec3 v2) {
    return (
        (vec3(gl_TessCoord.x) * v0) + 
        (vec3(gl_TessCoord.y) * v1) + 
        (vec3(gl_TessCoord.z) * v2)
    );
}

vec4 lerp(vec4 v0,vec4 v1,vec4 v2) {
    return (
        (vec4(gl_TessCoord.x) * v0) + 
        (vec4(gl_TessCoord.y) * v1) + 
        (vec4(gl_TessCoord.z) * v2)
    );
}

void main() {
    gl_Position = lerp(
        gl_in[0].gl_Position,gl_in[1].gl_Position,gl_in[2].gl_Position
    );

    tesc_out.normal = normal_matrix * lerp(
        tesc_in[0].normal,tesc_in[1].normal,tesc_in[2].normal
    );

    tesc_out.height = gl_Position.y;

    tesc_out.shadow_position = depth_matrix * gl_Position;
    gl_Position = model_view_perspective * gl_Position;
}

片段着色器

#version 450

in TESE_OUT {
    vec3 normal;
    float height;
    vec4 shadow_position;
} frag_in;

out vec4 colour;

uniform vec3 view_direction;
uniform vec3 light_position;

#define PI 3.141592653589793

void main() {
    const vec3 ambient = vec3(0.1,0.1,0.1);
    const float roughness = 0.8;

    const vec4 water = vec4(0.0,0.0,0.8,1.0);
    const vec4 sand = vec4(0.93,0.87,0.51,1.0);
    const vec4 grass = vec4(0.0,1.0);
    const vec4 ground = vec4(0.49,0.27,0.08,1.0);
    const vec4 snow = vec4(0.9,0.9,1.0);

    if(frag_in.height == 0.0) {
        colour = water;
    } else if(frag_in.height < 0.2) {
        colour = sand;
    } else if(frag_in.height < 0.575) {
        colour = grass;
    } else if(frag_in.height < 0.8) {
        colour = ground;
    } else {
        colour = snow;
    }

    vec3 normal = normalize(frag_in.normal);
    vec3 view_dir = normalize(view_direction);
    vec3 light_dir = normalize(light_position);

    float NdotL = dot(normal,light_dir);
    float NdotV = dot(normal,view_dir); 

    float angleVN = acos(NdotV);
    float angleLN = acos(NdotL);

    float alpha = max(angleVN,angleLN);
    float beta = min(angleVN,angleLN);
    float gamma = dot(view_dir - normal * dot(view_dir,normal),light_dir - normal * dot(light_dir,normal));

    float roughnessSquared = roughness * roughness;
    float roughnessSquared9 = (roughnessSquared / (roughnessSquared + 0.09));

    // calculate C1,C2 and C3
    float C1 = 1.0 - 0.5 * (roughnessSquared / (roughnessSquared + 0.33));
    float C2 = 0.45 * roughnessSquared9;

    if(gamma >= 0.0) {
        C2 *= sin(alpha);
    } else {
        C2 *= (sin(alpha) - pow((2.0 * beta) / PI,3.0));
    }

    float powValue = (4.0 * alpha * beta) / (PI * PI);
    float C3  = 0.125 * roughnessSquared9 * powValue * powValue;

    // now calculate both main parts of the formula
    float A = gamma * C2 * tan(beta);
    float B = (1.0 - abs(gamma)) * C3 * tan((alpha + beta) / 2.0);

    // put it all together
    float L1 = max(0.0,NdotL) * (C1 + A + B);

    // also calculate interreflection
    float twoBetaPi = 2.0 * beta / PI;

    float L2 = 0.17 * max(0.0,NdotL) * (roughnessSquared / (roughnessSquared + 0.13)) * (1.0 - gamma * twoBetaPi * twoBetaPi);

    colour = vec4(colour.xyz * (L1 + L2),1.0);
}

解决方法

首先,我将我的视图/正常/光矢量的片段着色器插入到我的渲染器中,并且它的工作原理完美.所以问题必须在你计算这些向量的方式上.

接下来,您说您将view_dir设置为相机的前端矢量.我假设你的意思是“摄像机在世界空间中的前向量”,这是不正确的.由于您使用相机空间中的向量计算点积,所以view_dir也必须位于相机空间中.那是vec3(0,1)将是一个简单的方法来检查.如果它有效 – 我们发现你的问题.

然而,当您进行透视投影时,使用(0,1)视图方向不是严格正确的,因为从片段到相机的方向依赖于片段在屏幕上的位置.那么正确的公式就是view_dir = normalize(-pos)其中pos是片段在相机空间中的位置(即使用没有投影的模型视图矩阵).此外,此数量现在仅取决于屏幕上的片段位置,因此可以将其计算为:

view_dir = normalize(vec3(-(gl_FragCoord.xy - frame_size/2) / (frame_width/2),flen))

flen是您的相机的焦距,您可以计算为flen = cot(fovx / 2).

猜你在找的C&C++相关文章