当玩家点击颜色α的网格的任何单元格时,网格的顶部左上角的单元格β,接收颜色α,但不仅如此:所有这些通过连接到源的单元格仅使用颜色α或β的路径也接收颜色α.
单元格之间的连接应仅在水平和垂直方向上考虑以形成路径.例如,当玩家点击左侧图中突出显示的单元格时,网格会接收图形向右的着色.游戏的目标是使网格单色.
输入说明
The first line of the input consists of 2 integers N and M (1 ≤ N ≤ 4,1 ≤ M ≤ 5),which represent respectively the number of lines and the number of columns of the grid. The N lines following describe the initial configuration of the grid,representing each colour by an integer between 0 and 9. The input does not consist of any other line.
输出说明
Print a line containing a single integer that represents the minimum number of clicks that the player must do in order to make the grid monochromatic.
输入样品
1:
4 5
01234
34567
67890
90123
2:4 5
01234
12345
23456
34567
3:4 5
00162
30295
45033
01837输出样本
1:
12
2:7
3:10
我试图找到一个解决方案与回溯(由于时间限制8秒和小尺寸的网格).但是超出了时间限制.有些人只是在0秒钟内完成.
还有一些其他算法来解决这个问题?
#include <stdio.h> #include <string.h> #define MAX 5 #define INF 999999999 typedef int signed_integer; signed_integer n,m,mink; bool vst[MAX][MAX]; signed_integer flood_path[4][2] = { {-1,0},{1,{0,1},-1} }; //flood and paint all possible cells... the root is (i,j) signed_integer flood_and_paint(signed_integer cur_grid[MAX][MAX],signed_integer i,signed_integer j,signed_integer beta,signed_integer alpha,signed_integer colors[]){ //invalid cell if (vst[i][j] || i < 0 || i >= n || j < 0 || j >= m) return 0; //mark existent colors colors[cur_grid[i][j]] = 1; //only alpha and beta colors counts if (cur_grid[i][j] != beta && cur_grid[i][j] != alpha) return 0; //mark (i,j) as visited and change its color vst[i][j] = true; cur_grid[i][j] = alpha; //floodit ! signed_integer ret = 1; for (signed_integer k = 0; k < 4; k++) ret += flood_and_paint(cur_grid,i + flood_path[k][0],j + flood_path[k][1],beta,alpha,colors); //how many cells change return ret; } void backtrack(signed_integer cur_grid[MAX][MAX],signed_integer k,signed_integer _cont,signed_integer alpha) { //bigger number of clicks for this solution ? ... getting back if(k >= mink) return; signed_integer colors[10]; memset(vst,false,sizeof(vst)); memset(colors,sizeof(colors)); signed_integer beta = cur_grid[0][0]; signed_integer cont = flood_and_paint(cur_grid,colors); //there are alpha colors to change and no beta colors to change colors[alpha] = 1; colors[beta] = 0; //all squares on same color if (cont == n * m) { mink = k; return; } //this solution is equals to another ? ... getting back if (cont == _cont) return; ++k;//new click //copy this matrix and backtrack signed_integer copy[MAX][MAX]; for (signed_integer c = 0; c < 10; ++c){ if (colors[c] && c != cur_grid[0][0]) { memcpy(copy,cur_grid,n*m*sizeof(signed_integer)); backtrack(copy,k,cont,c); } } } void cleanBuffer(){ while (getchar() != '\n'); } int main(void) { signed_integer grid[MAX][MAX]; scanf("%d %d",&n,&m); for (signed_integer i = 0; i < n; ++i) { cleanBuffer(); for (signed_integer j = 0; j < m; ++j){ grid[i][j] = getchar() - '0'; } } mink = INF; backtrack(grid,grid[0][0]); printf("%d\n",mink); return 0; }