C中最快的解交织操作?

前端之家收集整理的这篇文章主要介绍了C中最快的解交织操作?前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
我有一个指向混合字节数组的指针,它包含两个不同的数组array1和array2的交错字节.说混合看起来像这样:
a1b2c3d4...

我需要做的是对字节进行解交织,所以我得到array1 = abcd …和array2 = 1234 ….我知道提前混合的长度,array1和array2的长度是等效的混合/ 2.

这是我当前的实现(array1和array2已经分配):

int i,j;
int mixedLength_2 = mixedLength / 2;
for (i = 0,j = 0; i < mixedLength_2; i++,j += 2)
{
    array1[i] = mixed[j];
    array2[i] = mixed[j+1];
}

这避免了任何昂贵的乘法或除法运算,但仍然运行不够快.我希望有一些像memcpy这样的东西,它使用可以使用低级块复制操作来加速进程的索引器.比现在有更快的实现吗?

编辑

目标平台是iOS和Mac的Objective-C.一个快速的操作对于iOS设备来说更为重要,因此针对iOS的解决方案会比没有更好.

更新

感谢大家的回应,特别是斯蒂芬佳能,格雷厄姆李和梅奇.这是我的“主”功能,它使用史蒂芬的NEON内在函数(如果可用),否则格雷厄姆的联合游标与Mecki所建议的迭代次数相对减少.

void interleave(const uint8_t *srcA,const uint8_t *srcB,uint8_t *dstAB,size_t dstABLength)
{
#if defined __ARM_NEON__
    // attempt to use NEON intrinsics

    // iterate 32-bytes at a time
    div_t dstABLength_32 = div(dstABLength,32);
    if (dstABLength_32.rem == 0)
    {
        while (dstABLength_32.quot --> 0)
        {
            const uint8x16_t a = vld1q_u8(srcA);
            const uint8x16_t b = vld1q_u8(srcB);
            const uint8x16x2_t ab = { a,b };
            vst2q_u8(dstAB,ab);
            srcA += 16;
            srcB += 16;
            dstAB += 32;
        }
        return;
    }

    // iterate 16-bytes at a time
    div_t dstABLength_16 = div(dstABLength,16);
    if (dstABLength_16.rem == 0)
    {
        while (dstABLength_16.quot --> 0)
        {
            const uint8x8_t a = vld1_u8(srcA);
            const uint8x8_t b = vld1_u8(srcB);
            const uint8x8x2_t ab = { a,b };
            vst2_u8(dstAB,ab);
            srcA += 8;
            srcB += 8;
            dstAB += 16;
        }
        return;
    }
#endif

    // if the bytes were not aligned properly
    // or NEON is unavailable,fall back to
    // an optimized iteration

    // iterate 8-bytes at a time
    div_t dstABLength_8 = div(dstABLength,8);
    if (dstABLength_8.rem == 0)
    {
        typedef union
        {
            uint64_t wide;
            struct { uint8_t a1; uint8_t b1; uint8_t a2; uint8_t b2; uint8_t a3; uint8_t b3; uint8_t a4; uint8_t b4; } narrow;
        } ab8x8_t;

        uint64_t *dstAB64 = (uint64_t *)dstAB;
        int j = 0;
        for (int i = 0; i < dstABLength_8.quot; i++)
        {
            ab8x8_t cursor;
            cursor.narrow.a1 = srcA[j  ];
            cursor.narrow.b1 = srcB[j++];
            cursor.narrow.a2 = srcA[j  ];
            cursor.narrow.b2 = srcB[j++];
            cursor.narrow.a3 = srcA[j  ];
            cursor.narrow.b3 = srcB[j++];
            cursor.narrow.a4 = srcA[j  ];
            cursor.narrow.b4 = srcB[j++];
            dstAB64[i] = cursor.wide;
        }
        return;
    }

    // iterate 4-bytes at a time
    div_t dstABLength_4 = div(dstABLength,4);
    if (dstABLength_4.rem == 0)
    {
        typedef union
        {
            uint32_t wide;
            struct { uint8_t a1; uint8_t b1; uint8_t a2; uint8_t b2; } narrow;
        } ab8x4_t;

        uint32_t *dstAB32 = (uint32_t *)dstAB;
        int j = 0;
        for (int i = 0; i < dstABLength_4.quot; i++)
        {
            ab8x4_t cursor;
            cursor.narrow.a1 = srcA[j  ];
            cursor.narrow.b1 = srcB[j++];
            cursor.narrow.a2 = srcA[j  ];
            cursor.narrow.b2 = srcB[j++];
            dstAB32[i] = cursor.wide;
        }
        return;
    }

    // iterate 2-bytes at a time
    div_t dstABLength_2 = div(dstABLength,2);
    typedef union
    {
        uint16_t wide;
        struct { uint8_t a; uint8_t b; } narrow;
    } ab8x2_t;

    uint16_t *dstAB16 = (uint16_t *)dstAB;
    for (int i = 0; i < dstABLength_2.quot; i++)
    {
        ab8x2_t cursor;
        cursor.narrow.a = srcA[i];
        cursor.narrow.b = srcB[i];
        dstAB16[i] = cursor.wide;
    }
}

void deinterleave(const uint8_t *srcAB,uint8_t *dstA,uint8_t *dstB,size_t srcABLength)
{
#if defined __ARM_NEON__
    // attempt to use NEON intrinsics

    // iterate 32-bytes at a time
    div_t srcABLength_32 = div(srcABLength,32);
    if (srcABLength_32.rem == 0)
    {
        while (srcABLength_32.quot --> 0)
        {
            const uint8x16x2_t ab = vld2q_u8(srcAB);
            vst1q_u8(dstA,ab.val[0]);
            vst1q_u8(dstB,ab.val[1]);
            srcAB += 32;
            dstA += 16;
            dstB += 16;
        }
        return;
    }

    // iterate 16-bytes at a time
    div_t srcABLength_16 = div(srcABLength,16);
    if (srcABLength_16.rem == 0)
    {
        while (srcABLength_16.quot --> 0)
        {
            const uint8x8x2_t ab = vld2_u8(srcAB);
            vst1_u8(dstA,ab.val[0]);
            vst1_u8(dstB,ab.val[1]);
            srcAB += 16;
            dstA += 8;
            dstB += 8;
        }
        return;
    }
#endif

    // if the bytes were not aligned properly
    // or NEON is unavailable,fall back to
    // an optimized iteration

    // iterate 8-bytes at a time
    div_t srcABLength_8 = div(srcABLength,8);
    if (srcABLength_8.rem == 0)
    {
        typedef union
        {
            uint64_t wide;
            struct { uint8_t a1; uint8_t b1; uint8_t a2; uint8_t b2; uint8_t a3; uint8_t b3; uint8_t a4; uint8_t b4; } narrow;
        } ab8x8_t;

        uint64_t *srcAB64 = (uint64_t *)srcAB;
        int j = 0;
        for (int i = 0; i < srcABLength_8.quot; i++)
        {
            ab8x8_t cursor;
            cursor.wide = srcAB64[i];
            dstA[j  ] = cursor.narrow.a1;
            dstB[j++] = cursor.narrow.b1;
            dstA[j  ] = cursor.narrow.a2;
            dstB[j++] = cursor.narrow.b2;
            dstA[j  ] = cursor.narrow.a3;
            dstB[j++] = cursor.narrow.b3;
            dstA[j  ] = cursor.narrow.a4;
            dstB[j++] = cursor.narrow.b4;
        }
        return;
    }

    // iterate 4-bytes at a time
    div_t srcABLength_4 = div(srcABLength,4);
    if (srcABLength_4.rem == 0)
    {
        typedef union
        {
            uint32_t wide;
            struct { uint8_t a1; uint8_t b1; uint8_t a2; uint8_t b2; } narrow;
        } ab8x4_t;

        uint32_t *srcAB32 = (uint32_t *)srcAB;
        int j = 0;
        for (int i = 0; i < srcABLength_4.quot; i++)
        {
            ab8x4_t cursor;
            cursor.wide = srcAB32[i];
            dstA[j  ] = cursor.narrow.a1;
            dstB[j++] = cursor.narrow.b1;
            dstA[j  ] = cursor.narrow.a2;
            dstB[j++] = cursor.narrow.b2;
        }
        return;
    }

    // iterate 2-bytes at a time
    div_t srcABLength_2 = div(srcABLength,2);
    typedef union
    {
        uint16_t wide;
        struct { uint8_t a; uint8_t b; } narrow;
    } ab8x2_t;

    uint16_t *srcAB16 = (uint16_t *)srcAB;
    for (int i = 0; i < srcABLength_2.quot; i++)
    {
        ab8x2_t cursor;
        cursor.wide = srcAB16[i];
        dstA[i] = cursor.narrow.a;
        dstB[i] = cursor.narrow.b;
    }
}

解决方法

在我的头顶,我不知道一个库函数去交织2通道字节数据.然而,值得一提的是,苹果提出了一个错误报告来请求这样的功能.

在此期间,使用NEON或SSE内在函数对这样的函数进行向量化很容易.具体来说,在ARM上,您将需要使用vld1q_u8从每个源数组vuzpq_u8加载一个向量来对其进行解交织,并使用vst1q_u8来存储结果向量;这是一个粗略的草图,我没有测试甚至试图构建,但它应该说明一般的想法.更复杂的实现是绝对可能的(特别是NEON可以在单个指令中加载/存储两个16B寄存器,编译器可能无法执行此操作,根据缓冲区的长度,一些流水线和/或展开可能是有益的是):

#if defined __ARM_NEON__
#   include <arm_neon.h>
#endif
#include <stdint.h>
#include <stddef.h>

void deinterleave(uint8_t *mixed,uint8_t *array1,uint8_t *array2,size_t mixedLength) {
#if defined __ARM_NEON__
    size_t vectors = mixedLength / 32;
    mixedLength %= 32;
    while (vectors --> 0) {
        const uint8x16_t src0 = vld1q_u8(mixed);
        const uint8x16_t src1 = vld1q_u8(mixed + 16);
        const uint8x16x2_t dst = vuzpq_u8(src0,src1);
        vst1q_u8(array1,dst.val[0]);
        vst1q_u8(array2,dst.val[1]);
        mixed += 32;
        array1 += 16;
        array2 += 16;
    }
#endif
    for (size_t i=0; i<mixedLength/2; ++i) {
        array1[i] = mixed[2*i];
        array2[i] = mixed[2*i + 1];
    }
}

猜你在找的C&C++相关文章