我一直在GPU上开发一种加密算法,目前还在使用算法来执行大的整数加法.大整数以一般的方式表示为一堆32位字.
例如,我们可以使用一个线程来添加两个32位字.为了简单起见,假设
要添加的数字具有相同的长度和每个块的线程数==字数.然后:
__global__ void add_kernel(int *C,const int *A,const int *B) { int x = A[threadIdx.x]; int y = B[threadIdx.x]; int z = x + y; int carry = (z < x); /** do carry propagation in parallel somehow ? */ ............ z = z + newcarry; // update the resulting words after carry propagation C[threadIdx.x] = z; }
我很确定有一种方法可以通过一些棘手的减少程序进行传播,但无法理解.
我看了一下CUDA thrust extensions,但是大整数包似乎还没有实现.
也许有人可以给我一个提示如何在CUDA上这样做?
@R_301_323@
你是对的,进位传播可以通过前缀和计算完成,但是定义这个操作的二进制函数有点棘手,并证明它是关联的(并行前缀和需要).事实上,这个算法(理论上)在
Carry-lookahead adder中被使用.
假设我们有两个大的整数a [0..n-1]和b [0..n-1].
然后我们计算(i = 0..n-1):
s[i] = a[i] + b[i]l; carryin[i] = (s[i] < a[i]);
我们定义了两个功能:
generate[i] = carryin[i]; propagate[i] = (s[i] == 0xffffffff);
具有相当直观的意义:generate [i] == 1表示进位是在…生成的
位置i当传播[i] == 1表示进位将从位置传播
(i-1)至(i 1).我们的目标是计算用于更新所得和s [0..n-1]的函数进位[0..n-1].递归可以递归计算如下:
carryout[i] = generate[i] OR (propagate[i] AND carryout[i-1]) carryout[0] = 0
这里carryout [i] == 1如果在位置i产生进位,或者它有时较早生成并传播到位置i.最后,我们更新结果总和:
s[i] = s[i] + carryout[i-1]; for i = 1..n-1 carry = carryout[n-1];
现在证明进位函数确实是二进制关联是非常简单的,因此并行前缀和计算适用.为了在CUDA上实现这一点,我们可以将两个标志’generate’和’propagate’合并在一个变量中,因为它们是互斥的,即:
cy[i] = (s[i] == -1u ? -1u : 0) | carryin[i];
换一种说法,
cy[i] = 0xffffffff if propagate[i] cy[i] = 1 if generate[i] cy[u] = 0 otherwise
然后,可以验证以下公式计算进位功能的前缀和:
cy[i] = max((int)cy[i],(int)cy[k]) & cy[i];
对于所有k <一世.下面的示例代码显示2048个字整数的大量加法.这里我用了512个线程的CUDA块:
// add & output carry flag #define UADDO(c,a,b) \ asm volatile("add.cc.u32 %0,%1,%2;" : "=r"(c) : "r"(a),"r"(b)); // add with carry & output carry flag #define UADDC(c,b) \ asm volatile("addc.cc.u32 %0,"r"(b)); #define WS 32 __global__ void bignum_add(unsigned *g_R,const unsigned *g_A,const unsigned *g_B) { extern __shared__ unsigned shared[]; unsigned *r = shared; const unsigned N_THIDS = 512; unsigned thid = threadIdx.x,thid_in_warp = thid & WS-1; unsigned ofs,cf; uint4 a = ((const uint4 *)g_A)[thid],b = ((const uint4 *)g_B)[thid]; UADDO(a.x,a.x,b.x) // adding 128-bit chunks with carry flag UADDC(a.y,a.y,b.y) UADDC(a.z,a.z,b.z) UADDC(a.w,a.w,b.w) UADDC(cf,0) // save carry-out // memory consumption: 49 * N_THIDS / 64 // use "alternating" data layout for each pair of warps volatile short *scan = (volatile short *)(r + 16 + thid_in_warp + 49 * (thid / 64)) + ((thid / 32) & 1); scan[-32] = -1; // put identity element if(a.x == -1u && a.x == a.y && a.x == a.z && a.x == a.w) // this indicates that carry will propagate through the number cf = -1u; // "Hillis-and-Steele-style" reduction scan[0] = cf; cf = max((int)cf,(int)scan[-2]) & cf; scan[0] = cf; cf = max((int)cf,(int)scan[-4]) & cf; scan[0] = cf; cf = max((int)cf,(int)scan[-8]) & cf; scan[0] = cf; cf = max((int)cf,(int)scan[-16]) & cf; scan[0] = cf; cf = max((int)cf,(int)scan[-32]) & cf; scan[0] = cf; int *postscan = (int *)r + 16 + 49 * (N_THIDS / 64); if(thid_in_warp == WS - 1) // scan leading carry-outs once again postscan[thid >> 5] = cf; __syncthreads(); if(thid < N_THIDS / 32) { volatile int *t = (volatile int *)postscan + thid; t[-8] = -1; // load identity symbol cf = t[0]; cf = max((int)cf,(int)t[-1]) & cf; t[0] = cf; cf = max((int)cf,(int)t[-2]) & cf; t[0] = cf; cf = max((int)cf,(int)t[-4]) & cf; t[0] = cf; } __syncthreads(); cf = scan[0]; int ps = postscan[(int)((thid >> 5) - 1)]; // postscan[-1] equals to -1 scan[0] = max((int)cf,ps) & cf; // update carry flags within warps cf = scan[-2]; if(thid_in_warp == 0) cf = ps; if((int)cf < 0) cf = 0; UADDO(a.x,cf) // propagate carry flag if needed UADDC(a.y,0) UADDC(a.z,0) UADDC(a.w,0) ((uint4 *)g_R)[thid] = a; }
请注意,由于CUDA 4.0具有相应的内在函数(但我并不完全确定),因此可能不需要UADDO / UADDC宏.
还要指出的是,尽管并行还原相当快,但如果您需要在一行中添加几个大整数,则可能会使用一些冗余表示(上面的注释中提到的),即首先将添加的结果累加在64位字,然后在“一次扫描”中最后执行一个进位传播.