带CUDA的大整数加法

前端之家收集整理的这篇文章主要介绍了带CUDA的大整数加法前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
我一直在GPU上开发一种加密算法,目前还在使用算法来执行大的整数加法.大整数以一般的方式表示为一堆32位字.

例如,我们可以使用一个线程来添加两个32位字.为了简单起见,假设
添加的数字具有相同的长度和每个块的线程数==字数.然后:

__global__ void add_kernel(int *C,const int *A,const int *B) {
     int x = A[threadIdx.x];
     int y = B[threadIdx.x];
     int z = x + y;
     int carry = (z < x);
     /** do carry propagation in parallel somehow ? */
     ............

     z = z + newcarry; // update the resulting words after carry propagation
     C[threadIdx.x] = z;
 }

我很确定有一种方法可以通过一些棘手的减少程序进行传播,但无法理解.

我看了一下CUDA thrust extensions,但是大整数包似乎还没有实现.
也许有人可以给我一个提示如何在CUDA上这样做?

@R_301_323@

你是对的,进位传播可以通过前缀和计算完成,但是定义这个操作的二进制函数有点棘手,并证明它是关联的(并行前缀和需要).事实上,这个算法(理论上)在 Carry-lookahead adder中被使用.

假设我们有两个大的整数a [0..n-1]和b [0..n-1].
然后我们计算(i = 0..n-1):

s[i] = a[i] + b[i]l;
carryin[i] = (s[i] < a[i]);

我们定义了两个功能

generate[i] = carryin[i];
propagate[i] = (s[i] == 0xffffffff);

具有相当直观的意义:generate [i] == 1表示进位是在…生成
位置i当传播[i] == 1表示进位将从位置传播
(i-1)至(i 1).我们的目标是计算用于更新所得和s [0..n-1]的函数进位[0..n-1].递归可以递归计算如下:

carryout[i] = generate[i] OR (propagate[i] AND carryout[i-1])
carryout[0] = 0

这里carryout [i] == 1如果在位置i产生进位,或者它有时较早生成并传播到位置i.最后,我们更新结果总和:

s[i] = s[i] + carryout[i-1];  for i = 1..n-1
carry = carryout[n-1];

现在证明进位函数确实是二进制关联是非常简单的,因此并行前缀和计算适用.为了在CUDA上实现这一点,我们可以将两个标志’generate’和’propagate’合并在一个变量中,因为它们是互斥的,即:

cy[i] = (s[i] == -1u ? -1u : 0) | carryin[i];

换一种说法,

cy[i] = 0xffffffff  if propagate[i]
cy[i] = 1           if generate[i]
cy[u] = 0           otherwise

然后,可以验证以下公式计算进位功能的前缀和:

cy[i] = max((int)cy[i],(int)cy[k]) & cy[i];

对于所有k <一世.下面的示例代码显示2048个字整数的大量加法.这里我用了512个线程的CUDA块:

// add & output carry flag
#define UADDO(c,a,b) \ 
     asm volatile("add.cc.u32 %0,%1,%2;" : "=r"(c) : "r"(a),"r"(b));
// add with carry & output carry flag
#define UADDC(c,b) \ 
     asm volatile("addc.cc.u32 %0,"r"(b));

#define WS 32

__global__ void bignum_add(unsigned *g_R,const unsigned *g_A,const unsigned *g_B) {

extern __shared__ unsigned shared[];
unsigned *r = shared; 

const unsigned N_THIDS = 512;
unsigned thid = threadIdx.x,thid_in_warp = thid & WS-1;
unsigned ofs,cf;

uint4 a = ((const uint4 *)g_A)[thid],b = ((const uint4 *)g_B)[thid];

UADDO(a.x,a.x,b.x) // adding 128-bit chunks with carry flag
UADDC(a.y,a.y,b.y)
UADDC(a.z,a.z,b.z)
UADDC(a.w,a.w,b.w)
UADDC(cf,0) // save carry-out

// memory consumption: 49 * N_THIDS / 64
// use "alternating" data layout for each pair of warps
volatile short *scan = (volatile short *)(r + 16 + thid_in_warp +
        49 * (thid / 64)) + ((thid / 32) & 1);

scan[-32] = -1; // put identity element
if(a.x == -1u && a.x == a.y && a.x == a.z && a.x == a.w)
    // this indicates that carry will propagate through the number
    cf = -1u;

// "Hillis-and-Steele-style" reduction 
scan[0] = cf;
cf = max((int)cf,(int)scan[-2]) & cf;
scan[0] = cf;
cf = max((int)cf,(int)scan[-4]) & cf;
scan[0] = cf;
cf = max((int)cf,(int)scan[-8]) & cf;
scan[0] = cf;
cf = max((int)cf,(int)scan[-16]) & cf;
scan[0] = cf;
cf = max((int)cf,(int)scan[-32]) & cf;
scan[0] = cf;

int *postscan = (int *)r + 16 + 49 * (N_THIDS / 64);
if(thid_in_warp == WS - 1) // scan leading carry-outs once again
    postscan[thid >> 5] = cf;

__syncthreads();

if(thid < N_THIDS / 32) {
    volatile int *t = (volatile int *)postscan + thid;
    t[-8] = -1; // load identity symbol
    cf = t[0];
    cf = max((int)cf,(int)t[-1]) & cf;
    t[0] = cf;
    cf = max((int)cf,(int)t[-2]) & cf;
    t[0] = cf;
    cf = max((int)cf,(int)t[-4]) & cf;
    t[0] = cf;
}
__syncthreads();

cf = scan[0];
int ps = postscan[(int)((thid >> 5) - 1)]; // postscan[-1] equals to -1
scan[0] = max((int)cf,ps) & cf; // update carry flags within warps
cf = scan[-2];

if(thid_in_warp == 0)
    cf = ps;
if((int)cf < 0)
    cf = 0;

UADDO(a.x,cf) // propagate carry flag if needed
UADDC(a.y,0)
UADDC(a.z,0)
UADDC(a.w,0)
((uint4 *)g_R)[thid] = a;
}

请注意,由于CUDA 4.0具有相应的内在函数(但我并不完全确定),因此可能不需要UADDO / UADDC宏.

还要指出的是,尽管并行还原相当快,但如果您需要在一行中添加几个大整数,则可能会使用一些冗余表示(上面的注释中提到的),即首先将添加的结果累加在64位字,然后在“一次扫描”中最后执行一个进位传播.

猜你在找的C&C++相关文章