c – 从一个字符串/ boost ::任何地图构建boost :: options

前端之家收集整理的这篇文章主要介绍了c – 从一个字符串/ boost ::任何地图构建boost :: options前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
我有一个表示一个配置的地图.它是一个std :: string和boost :: any的地图.

该地图在开始时被初始化,我希望用户能够在命令行上覆盖这些选项.

我想做的是使用options_description :: add_option()方法从该地图构建程序选项.但是,它需要一个模板参数po :: value<>而我所有的都是boost :: any.

到目前为止,我只是有代码shell. m_Config表示我的配置类,getTuples()返回一个std :: map< std :: string,Tuple>. TuplePair是一个typedef的std :: pair< std :: string,Tuple>而元组包含boost :: any我感兴趣的.

po::options_description desc;
    std::for_each(m_Config.getTuples().begin(),m_Config.getTuples().end(),[&desc](const TuplePair& _pair)
    {
            // what goes here? :)
            // desc.add_options() ( _pair.first,po::value<???>,"");
    });

有没有办法以这种方式建立,还是需要自己去做?

提前致谢!

解决方法

boost :: any不适用于你的问题.它执行最基本的类型擦除形式:存储和(类型安全)检索,就是这样.如您所见,不能执行其他操作.正如jhasse指出的,你可以测试你想要支持的每种类型,但这是一个维护噩梦.

更好的是扩大想法boost ::任何用途.不幸的是,这需要一些锅炉代码.如果你想尝试一下,现在正在邮件列表(标题为“[boost] RFC:type erasure”)上讨论一个新的Boost库,这个基本上是一个广义的类型擦除实用程序:你定义你想要的操作像您擦除的类型一样支持,它会生成正确的实用程序类型. (它可以模拟boost :: any,例如,要求擦除类型是可复制的和类型安全的,并且可以通过额外要求该类型可调用来模拟boost :: function&.

除此之外,您最好的选择可能是自己写这样一个类型.我会为你做的:

#include <boost/program_options.hpp>
#include <typeinfo>
#include <stdexcept>

namespace po = boost::program_options;

class any_option
{
public: 
    any_option() :
    mContent(0) // no content
    {}

    template <typename T>
    any_option(const T& value) :
    mContent(new holder<T>(value))
    {
        // above is where the erasure happens,// holder<T> inherits from our non-template
        // base class,which will make virtual calls
        // to the actual implementation; see below
    }

    any_option(const any_option& other) :
    mContent(other.empty() ? 0 : other.mContent->clone())
    {
        // note we need an explicit clone method to copy,// since with an erased type it's impossible
    }

    any_option& operator=(any_option other)
    {
        // copy-and-swap idiom is short and sweet
        swap(*this,other);

        return *this;
    }

    ~any_option()
    {
        // delete our content when we're done
        delete mContent;
    }

    bool empty() const
    {
        return !mContent;
    }

    friend void swap(any_option& first,any_option& second)
    {
        std::swap(first.mContent,second.mContent);
    }

    // now we define the interface we'd like to support through erasure:

    // getting the data out if we know the type will be useful,// just like boost::any. (defined as friend free-function)
    template <typename T>
    friend T* any_option_cast(any_option*);

    // and the ability to query the type
    const std::type_info& type() const
    {
        return mContent->type(); // call actual function
    }

    // we also want to be able to call options_description::add_option(),// so we add a function that will do so (through a virtual call)
    void add_option(po::options_description desc,const char* name)
    {
        mContent->add_option(desc,name); // call actual function
    }

private:
    // done with the interface,now we define the non-template base class,// which has virtual functions where we need type-erased functionality
    class placeholder
    {
    public:
        virtual ~placeholder()
        {
            // allow deletion through base with virtual destructor
        }

        // the interface needed to support any_option operations:

        // need to be able to clone the stored value
        virtual placeholder* clone() const = 0;

        // need to be able to test the stored type,for safe casts
        virtual const std::type_info& type() const = 0;

        // and need to be able to perform add_option with type info
        virtual void add_option(po::options_description desc,const char* name) = 0;
    };

    // and the template derived class,which will support the interface
    template <typename T>
    class holder : public placeholder
    {
    public:
        holder(const T& value) :
        mValue(value)
        {}

        // implement the required interface:
        placeholder* clone() const
        {
            return new holder<T>(mValue);
        }

        const std::type_info& type() const
        {
            return typeid(mValue);
        }

        void add_option(po::options_description desc,const char* name)
        {
            desc.add_options()(name,po::value<T>(),"");
        }

        // finally,we have a direct value accessor
        T& value()
        {
            return mValue;
        }

    private:
        T mValue;

        // noncopyable,use cloning interface
        holder(const holder&);
        holder& operator=(const holder&);
    };

    // finally,we store a pointer to the base class
    placeholder* mContent;
};

class bad_any_option_cast :
    public std::bad_cast
{
public:
    const char* what() const throw()
    {
        return "bad_any_option_cast: Failed conversion";
    }
};

template <typename T>
T* any_option_cast(any_option* anyOption)
{
    typedef any_option::holder<T> holder;

    return anyOption.type() == typeid(T) ? 
            &static_cast<holder*>(anyOption.mContent)->value() : 0; 
}

template <typename T>
const T* any_option_cast(const any_option* anyOption)
{
    // none of the operations in non-const any_option_cast
    // are mutating,so this is safe and simple (constness
    // is restored to the return value automatically)
    return any_option_cast<T>(const_cast<any_option*>(anyOption));
}

template <typename T>
T& any_option_cast(any_option& anyOption)
{
    T* result = any_option_cast(&anyOption);
    if (!result)
        throw bad_any_option_cast();

    return *result;
}

template <typename T>
const T& any_option_cast(const any_option& anyOption)
{
    return any_option_cast<T>(const_cast<any_option&>(anyOption));
}

// NOTE: My casting operator has slightly different use than
// that of boost::any. Namely,it automatically returns a reference
// to the stored value,so you don't need to (and cannot) specify it.
// If you liked the old way,feel free to peek into their source.

#include <boost/foreach.hpp>
#include <map>

int main()
{
    // (it's a good exercise to step through this with
    //  a debugger to see how it all comes together)
    typedef std::map<std::string,any_option> map_type;
    typedef map_type::value_type pair_type;

    map_type m;

    m.insert(std::make_pair("int",any_option(5)));
    m.insert(std::make_pair("double",any_option(3.14)));

    po::options_description desc;

    BOOST_FOREACH(pair_type& pair,m)
    {
        pair.second.add_option(desc,pair.first.c_str());
    }

    // etc.
}

让我知道如果有什么不清楚.

猜你在找的C&C++相关文章