\$watch 和 \$digest
$watch
和 $digest
是数据绑定中的核心概念:我们可以使用 \$watch 在 scope 中绑定 watcher
用于监听 scope 中发生的变化,而 \$digest 方法的执行即是遍历 scope 上绑定的所有 watcher,并执行相应的 watch(指定想要监控的对象) 和 listener(当数据改变时触发的回调) 方法。
function Scope { this.$$watchers = []; // $$ 前缀表示私有变量 } Scope.prototye.$watch = function(watchFn,listenerFn) { let watcher = { watchFn: watchFn,listenerFn: listenerFn,}; this.$$watchers.push(watcher); } Scope.prototype.$digest = function() { this.watchers.forEach((watcher) => { watcher.listenerFn(); }); }
上述代码实现的 \$digest 并不实用,因为实际上我们需要的是:监听的对象数据发生改变时才执行相应的 listener 方法。
脏检查
Scope.prototype.$digest = function() { let self = this; let newValue,oldValue; this.watchers.forEach((watcher) => { newValue = watcher.watchFn(self); oldValue = wather.last; if (newValue !== oldValue) { watch.last = newValue; watcher.listenerFn(newValue,oldValue,self); } }); }
上述代码在大部分情况下可以正常运行,但是当我们首次遍历 watcher 对象时其 last
变量值为 undefined
,这样会导致如果 watcher 的第一个有效值同为 undefined 也会触发 listener 方法。
console.log(undefined === undefined) // true
function initWatchVal() { // TODO } Scope.prototye.$watch = function(watchFn,listenerFn: listenerFn || function() {},last: initWatchVal }; this.$$watchers.push(watcher); } Scope.prototype.$digest = function() { let self = this; let newValue,oldValue === initWatchVal ? newValue : oldValue,self); } }); }
循环进行脏检查
在进行 digest 时往往会发生如下情况,即某个 watcher 执行 listener 方法会引起其他 watcher 监听的对象数据发生改变,因此我们需要循环进行脏检查来使变化“彻底”完成。
Scope.prototype.$$digestOnce = function() { let self = this; let newValue,dirty; this.watchers.forEach((watcher) => { newValue = watcher.watchFn(self); oldValue = wather.last; if (newValue !== oldValue) { dirty = true; watch.last = newValue; watcher.listenerFn(newValue,self); } }); return dirty; } Scope.prototype.$digest = function() { let dirty; do { dirty = this.$$digestOnce(); } while (dirty); }
上述代码只要在遍历中发现脏值,就会多循环一轮直到没有发现脏值为止,我们考虑这样的情况:即是两个 watcher 之间互相影响彼此,则会导致无限循环的问题。
我们使用 TTL
(Time to Live)来约束遍历的最大次数,在 Angular 中默认次数为10。
Scope.prototype.$digest = function() { let dirty; let ttl = 10; do { dirty = this.$$digestOnce(); if (dirty && !(ttl--)) { throw '10 digest iterations reached.'; } } while (dirty) }
同时,在每次 digest 的最后一轮遍历没有必要对全部 watcher 进行检查,我们通过使用 $$lastDirtyWatch
变量来对这部分代码的性能进行优化。
function Scope { this.$$watchers = []; this.$$lastDirtyWatch = null; } Scope.prototype.$digest = function() { let dirty; let ttl = 10; this.$$lastDirtyWatch = null; do { dirty = this.$$digestOnce(); if (dirty && !(ttl--)) { throw '10 digest iterations reached.'; } } while (dirty) } Scope.prototype.$$digestOnce = function() { let self = this; let newValue,dirty; this.watchers.forEach((watcher) => { newValue = watcher.watchFn(self); oldValue = wather.last; if (newValue !== oldValue) { self.$$lastDirtyWatch = watcher; dirty = true; watch.last = newValue; watcher.listenerFn(newValue,self); } else if (self.$$lastDirtyWatch === watcher) { return false; } }); return dirty; }
同时为了避免 \$watch 嵌套使用带来的不良影响,我们需要在每次添加 watcher 时重置 \$$lastDirtyWatch:
Scope.prototye.$watch = function(watchFn,last: initWatchVal }; this.$$watchers.push(watcher); this.$$lastDirtyWatch = null; }
深浅脏检查
目前为止我们实现的脏检查,仅能监听到值的变化(浅脏检查),无法判断引用内部数据发生的变化(深脏检查)。
Scope.prototye.$watch = function(watchFn,listenerFn,valueEq) { let watcher = { watchFn: watchFn,valueEq: !!valueEq,last: initWatchVal }; this.$$watchers.push(watcher); this.$$lastDirtyWatch = null; }
Scope.prototype.$$areEqual = function(newValue,valueEq) { if (valueEq) { return _.isEqual(newValue,oldValue); } else { return newValue === oldValue; } }
Scope.prototype.$$digestOnce = function() { let self = this; let newValue,dirty; this.watchers.forEach((watcher) => { newValue = watcher.watchFn(self); oldValue = wather.last; if (!self.$$areEqual(newValue,watcher.valueEq)) { self.$$lastDirtyWatch = watcher; dirty = true; watch.last = watcher.valueEq ? _.cloneDeep(newValue) : newValue; watcher.listenerFn(newValue,self); } else if (self.$$lastDirtyWatch === watcher) { return false; } }); return dirty; }
NaN 的兼容考虑
需要注意的是,NaN 不等于其自身,所以在判断 newValue 与 oldValue 是否相等时,需要特别考虑。
Scope.prototype.$$areEqual = function(newValue,oldValue); } else { return newValue === oldValue || (typeof newValue === 'number' && typeof oldValue === 'number' && isNaN(newValue) && isNaN(oldValue)); } }